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ABSTRACT

We show here that any two finite state irreducible Markov chains of the
same entropy are finitarily Kakutani equivalent. By this we mean they
are orbit equivalent by an invertible measure preserving mapping that is
almost continuous and monotone in time when restricted to some cylinder
set. Smorodinsky and Keane have shown that any two irreducible Markov
chains of equal entropy and period are finitarily isomorphic. Hence, all
that is necessary to obtain our result is to show that for every entropy
h > 0 and period p € N there exists two irreducible Markov chains o1, 02
both of entropy h, where:

(1) o1 is mixing,

(2) o2 has period p and

(3) o1 and o2 are finitarily Kakutani equivalent.

Received February 24, 2006

29



30 M. K. ROYCHOWDHURY AND D. J. RUDOLPH Isr. J. Math.

1. Introduction

A map between two spaces is called finitary or almost continuous if it is both
measure preserving and almost continuous. This concept only makes sense when
the underlying spaces are both topological and measure spaces. Thus, finitary
theory in dynamics is most natural in classes of dynamical systems that are
simultaneously measure preserving and topological.

In 1979 Keane and Smorodinsky [KS1] showed that two irreducible Markov
chains of equal entropy and equal period are finitarily isomorphic. This ex-
panded on their earlier work showing all Bernoulli shifts of equal entropy were
finitarily isomorphic. More recently, Keane, Hamachi and Roychowdhury have
begun the development of a finitary orbit equivalence theory, see [HK], [HKR],
[R1] and [R2]. Our work here is part of a larger project to develop a finitary
Kakutani equivalence theory. We take the perspective of even Kakutani equiv-
alence that allows us to regard a Kakutani equivalence as an orbit equivalence
with the restriction that it be an isomorphism when restricted to some sub-
set of positive measure. Group rotations are natural examples that are both
measure preserving and topological and we have begun their study. Irreducible
Markov chains are a natural class of examples and now in positive entropy and
we completely classify their finitary Kakutani equivalence theory here.

Finitary theory, as indicated above, makes most sense when considered on
specific classes of examples and has always been a constructive theory. Our
work here is precisely in that tradition. We show that any two finite state
irreducible Markov chains of equal entropy are finitarily Kakutani equivalent.
The earlier work of Smorodinsky and Keane, showing that entropy and period
give complete invariants for finitary isomorphism of irreducible Markov chains,
makes our task even more constructive in that all we need to do is to exhibit,
for each entropy h > 0 and period p € N that there exist Markov chains o7 and
02, both of entropy h, where:

(1) o1 is mixing,
(2) o has period p and
(3) o1 and o9 are finitarily Kakutani equivalent.

To explain this in detail, suppose T}, and Ty are two irreducible Markov chains
of equal entropy h, T}, has period p and T, has period gq. Then, using Keane
and Smorodinsky’s result we can say that T}, and o, are finitarily isomorphic,
and oy is finitarily evenly Kakutani equivalent to a mixing Markov chain o;.
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Using the same argument there exists an irreducible Markov chain o/ of
entropy h and period g such that T is finitarily isomorphic to ¢4 and o} is
finitarily evenly Kakutani equivalent to a mixing Markov chain o7.

Using Keane and Smorodinsky’s result again we have that o1 and o] are
finitarily isomorphic. Since finitarily evenly Kakutani equivalence relation is an
equivalence relation, T}, and Ty, are finitarily evenly Kakutani equivalent.

2. Construction of Markov chains o; and o9

CASE 1: o7 is mixing and o3 has period > 3.
Let
Y ={51,52,...,8:,1,2,3,...,p,51, Sk}
be the state space of a Markov chain with (k 4+ p + 2) states, p > 2. Let us
denote this Markov chain by the shift automorphism o. Let A(é,j) represent
the transition probability of a state i to a state j. To define the transition
matrix A let (p1,p2,...,px) be a probability vector with all p; > 0 and set:

A(1,2) = A(2,3)=A(3,4)=...=A(p—1,p) =1
A(p,s1) =p1, Alp,52) =p2, Alp,53) =ps,-.-,
A(p, k-1) = pr-1, AP, Sk) = Pk
A(s1,51) =1
A(sk,5k) =1
)

A(3;,1 1 Vi=1,2,...,k—-1
A(5k,2) =1

and this makes ¢ irreducible and mixing.

A glance at the graph of the chain (shown in Figure 1) shows all states
communicate and hence it is irreducible. To see it is mixing note it has two
paths

p—8§ —8§—>1—-2—---—p and p— s — 85§ —=2— - —Dp,

whose lengths differ by 1.

By setting p1 = pi a relatively simple symmetry argument gives us that in
the Markov chain o we will have that p(31) = p(5x) where p(i) is the stationary
probability of state i. The structure of the graph of the Markov chain also gives



32 M. K. ROYCHOWDHURY AND D. J. RUDOLPH Isr. J. Math.

us that
p(2) = p(3) == p(p),
p(s1) = p(81), p(sk) = p(5k),
p(1) = p(51) + p(52) + - + p(5k-1)
p(2) = p(51) + p(52) + - + p(5k—1) + p(5k)
p(s1) = pip(p) = p(5k), p(52) = p2p(p), p(53) = p3p(p)

p(sx) = prp(p).

Using the above relations we have,

p(1) +p(2) + -+ p(p) + p(s1) + p(51) + p(52) + -+ - + p(Sk) + p(sk) =1
= (p—1)p(p) + p(1) + p(s1) + p(2) + p(sk) = 1
= (p— Dp(p) + (p(1) + p(sk)) p(Sl) p(2) =1
= (p— Dp(p) + p(2) + p(s1) + p(2) =
[ p(2) = p(1) = p(5k) = p(sk)]
= (p— Dp(p) + p(p) + p1p(p) + p(p) =1

1
p+1+4+p

= p(p) =
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Hence, the entropy of ¢ is given by

ho)=— Y p(s1)A(s1,52)logy(A(s1, 52))

pairs of si,s2

= — [p(p)A(p, s1)logy A(p, s1) + p(p) A(p, 52) logy A(p, 52) + - -
+ p(p)A(p, 5k—1)logy A(p, Sk—1) + p(p)A(p, k) logy A(p, sk)]

( ) = 1p110g2pz
1
—— ————%F plo i
p+1+p1 lflpl o Di
Let 01 = Osp be the induced transformation of o on the cylinder set 5
i.e. after removing 55 from o. As the state §; always follows the state s the
induced transformation is generated by the remaining symbols and in these

terms o is still irreducible. In addition, it is mixing since it has two paths
p—8.1—1—>2—---—p and p—s—>2—---—p

whose lengths differ by 1.

Let 02 = 05¢ be the induced transformation of o on 57 i.e. after removing 53
from o. As the state 5; always follows s; the dynamical system after inducing
on this complement is generated by the remaining states of the Markov chain
and in these terms o5 is irreducible and has period p + 1.

We can calculate the entropy of o; to be

1
h il i
() =1 —p(sl)p+ 1 +p1 ( 2r Og2p>

= pzlo Di

1*2?1/3 ( Z 82 )
11 K3

p+1( S ogzp)

=h(o2)

the entropy induced on o9, i.e. both ¢; and o2 have the same entropy.

We now describe the other possible cases, which are variations on this same
idea.

CASE 2: 07 is mixing and o9 has period 2.
Set the state space to be

Y= {51,52,.. .,§k,1,51},
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—

Figure 2

with the transition probabilities:
A(l,sl) = pl,A(Sl, 51) = A(gi, 1) =1 fOI‘ 1= 1, 2, .. .,k’
A(1,8)=p; fori =2,3,... k.

Isr. J. Math.

One checks easily that the stationary probabilities for this Markov chain are

p(s1) = p(51)
p(s1) = p1p(1)
p(52) = pap(1)

p(5x) = prp(1).

We also assume p(51) = p(5k).
Using the above relations we have,

p(1) + p(s1) + p(51) + p(52) + -+ + p(5k) =
= p(1) +p(1) +p(51) =1
= 2p(1) +pip(l) =1
= p(1) =1/p1 +2.
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Denote the Markov chain with Markov measure p and the shift automorphism
0. Then proceeding as Case 1, it is easy to show that induced Markov chain
o1 = o5 is irreducible and mixing, the induced Markov chain oo = o5 is

irreducible and has period 2 and both ¢ and o5 have the same entropy.

3. Constructing the finitary Kakutani equivalence

We have constructed an initial Markov chain ¢ and then induced on the com-
plements of two subsets §; and 5 to build the two Markov chains o7 and os.
Now both §; and §; have the same measure. Our goal is to show o1 and oy
are almost continuously Kakutani equivalent. We prove this by working on the
global space X on which o acts. What we will do is to construct a finitary
isomorphism ¢ : X — X that carries §; to S3, acts as the identity off of these
two cylinder sets and preserves orbits. It will be convenient for us to make ¢
an involution as then there is no question of it being invertible and possessing
a finitary inverse. We now begin this construction.

We let 3" represent all words of length n allowed by the Markov matrix A
and (J77, X" represents the set of all possible words in the Markov chain. For

n=1
any word w = [Wg, W1, ..., Wp] € U,—, X" by B(w) we denote

B(w):{f:z():u_)o,xl :’le,_,_’zp:ﬂ)p}_

Let us choose the word wg = [p, 52,1,2,...,p — 1] and by Bj we denote the
k + 1-fold concatenation of copies of wg i.e. By = B(wkt) (k> 0).
For a.e. x € X, Jip(z) <0, jo(x) > 0 s.t.

io(z) = max{t <0:0"'(z) € Bo}, jo(x)=min{t>0:0"(x) € By}.

Then set [By, Bo)z = {0 (), 0@+ (z), ...z, 0(x),...,07° @1 (z)} ar-
ranged in increasing order as listed here according to the power of o as

600 (z) < o) < <@ < o(2) < - < 0N (g),

If o (x) € [Bo, Bo)a, then [Bo, Bo) s () = [Bo, Bo)x since io(a*(x)) = ip(x) —
k and jo(o* (x)) = j(z) — k.

We are now ready to begin to define ¢. We will work inductively defining
¢ on an increasing sequence of sets and here is the O-th step. First define ¢q
by ¢o(x) = x if g # 31,5;. This defines ¢ on the clopen set given by the
complement of the two sets §; and 5; as the identity.
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Let

No(z)
MQ(.Z')

I
Y]

t:ig(x) <t < jo(x), (0" (x))o

{ 1}’
{t 1ip(x) <t < jo(x), (' (x))o

K}
Set Py(z) = min{#No(z), #Mo(x)}. List No(x) and My(z) in order as

I
|

No(z) ={t1 <ta <--- <t; <--- <lunya)}
and
Mo(l') = {81 LSy < 5P < e e < S#Mo(.L)}

Now for almost every « € X we have x € [By, By), and if zo = 51, then 0 = ¢;
for some t; € No(z).

If | < Py(z), define ¢g(x) = o (x) and ¢o(c® (x)) = x. This extends the
definition of ¢ to some points whose zeroth coordinate is equal to 51 or 5.

We examine this definition a bit. Fixing a set [By, Bp), and considering the
various points ¢ () in it we see ¢g(cti(z)) = 0% (z) and ¢o(c® (x)) = oli(x)
fori=1,2,..., Py(x).
Thus where it is defined ¢g preserves o orbits, is the identity off 5; U 5, carries

51 to 5, and acts as an involution where it is defined.
Continuing inductively we define:

i1(z) =max{t <0:0'(x) € B1}, ji(xr)=min{t>0:0'(z) € B;}.

Then [By, B1), = {o"®) (z), 0@+ (2), ... 2,0(z),...,07" @~ (2)} arranged
in increasing order according to the power of o as

o1 @ () <o) <<z <o(x) <o <ot @® 7).
Let
Ni(z) = {t:i1(z) <t < ji(2), (¢'(x))o = 51 and ¢ is not defined at o ()}
and
My(z) = {t :i1(z) <t < ji(z), (o"(2))o = 5k and ¢y is not defined at o' (x)}.

Now for almost every = we have x € [By, By),, and we define ¢; as follows:

(1) If ¢o is defined at x, then ¢1(x) = ¢o(x).
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(2) If ¢p is not defined at x, then we must have xy = 3; or ¢ = 5, and
we attempt to define ¢ as follows: List {o!(z) : t € Ni(z)} in order
1 < 3 < 23 < -0 < Ty (g List {o'(z) : t € Mi(x)} in order
Y1 < y2 <Yz < < Yuan () Set Pr(z) = min{#Ni(z), #M;(v)}.
Now for 1 < i < Py (z) define ¢1(z;) = yi, ¢1(yi) = ;.

Proceeding inductively for any positive integer k define:
ix(r) = max{t < 0:0'(z) € By}
and
je(r) = min{t > 0: o'(x) € By}.

Now set [By, Bi)e = {o*@) (), c* @+ (2), ... 2, 0(x),..., 0@ (2)} ar-

ranged in order according to the power of o as

o@D (z) < gD (z) < <x < o(a) < -- < O (g),

Let:

Ni(z) =
{t rir(z) <t < jr(x), (6'(x))o = 51 and ¢x_1 is not defined at o'(z)}

and

My.(z) =
{t:in(z) <t <jp(x), (6'(x))o = 51 and ¢, is not defined at o' (z)}.
Now for almost every x we have x € [By, By)., we attempt to define ¢y (z)

as:

(1) If ¢r—1 is defined at x, then ¢x(x) = dr—1(x).

(2) If ¢r—1 is not defined at x, then we must have o = §1 or g = S, and we
attempt to define ¢y () in the following way. List {o?(z) : t € Ni(z)} in
order z1 < 3 < 3 < -+ < Ty, (2). List {o'(x) 1 t € My(x)} in order
Y1 < Y2 < Y3 < o0 < Ysn(a) Set Pr(w) = min{# Ny (), # My (v)}.
Now for 1 < i < Py(x) define ¢ () = yi, dr(yi) = ;.

This now completes the definition of ¢ as

= U¢i st. ¢(x) = ¢i(x), if ¢; is defined at .

We now complete our understanding of ¢ through a series of lemmas.
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LEMMA 4: ¢ is defined at a.e. x € X.

Proof. Let E = {z : ¢ is not defined at x}. We will show that u(E) = 0.
Suppose u(F) = a > 0. Then V k,

u({x : ¢r is not defined at z}) > o > 0.
We know that for a.e. , ix(x) and ji(x) are finite and

lim ix(x) = —oo, lim ji(x) = oco.
k—o00 k—o00

Again, by Birkhoff’s ergodic theorem,

i ()]
Y xslo7' (@) = u(E) =a

lim ————
k—o0 |Zk($)| +1 =0

Jk (@)

ZXE () = w(E) = .

k—»oojk

Now

Jk () 0 Jk ()

Y xsl'@)= Y xsl'@)+ Y xp(o'(2))

t=—lik(z)| t=—lix ()|

ik ()] Ik (@)
=Y xe(e @)+ Y xeld'(@)
t=0 t=1

= (ax &) (lir(x)| + 1) + (a £ &) (G (2))
= (£ er)(|ir(@)] + jr(z) + 1).

This implies for a.e. x,

1 Ik ()

lim , Z xe(d'(z)) = a.

k—oo |ig ()] + je(z) +1 4
t=lin ()|




Vol. 165, 2008 FINITARY KAKUTANI EQUIVALENCE 39
Now for every value of k,

#{t : —|ix(z)| <t < jr(x), Pr(x) in not defined at o'(z)}
[#{t - —lir(2)] <t <ji(x), (0'(2))o = 51}
—#H{t s —lin(@)| <t <ji(@), (0"(2))o = 5k}

Jr(z)—1 Jr(z)—1
=l > xs@@) - Y xs(o'(a)
t=—|ip ()] t=—lig ()]
' ' 1 Jr(z)—1 .
=(|ir ()| + jr(z)) mt_%@)lxm (0" (z))
1 Jr(z)—1
S xalot@).

i)+ ) 4=

Therefore, for every value of k

1 Jr(z)—1
_— ot(x
t=—li ()|
1
= ————F—#{t: —|ix(x)| <t < Jr(x), is not defined at of(z
T @l <t <), ¢ (o)}
1
< —————H#{t: —ig(x)] <t < jr(o), is not defined at o' (z
1 Jr(z)—1 1 Jr(z)—1
=T T glatﬂﬁ - Xs ol(z
e 2 @) - parany 2 xal'@)
t=—li ()| t=—liy ()]
— |u(51) — p(sK)| = 0.
Which implies o = 0, which is a contradiction and so ¢ is defined a.e. |

LEMMA 5: For a.e. x € X, x and ¢(x) are in the same orbit.

Proof. For any x € X, there exists an integer k > 0 with ¢(z) = ¢ (z). In this
case both x and ¢y (x) belong to [By, By). which is a finite subset of the orbit
of x. |

LEMMA 6: ¢ is an involution and hence invertible.
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Proof. ¢ is defined at a.e. x € X. If ¢ is defined at = then 3 k > 0 such that
¢(x) = ¢r(z) and by construction ¢i(¢dx(x)) = x. Hence for a.e. z, d(d(x)) =
xT. |

LEMMA 7: ¢ is almost continuous and measure preserving.

Proof. For any integer k > 0, we define a relation Ry in X as follows:
For any two elements x,y € X, xRyy holds if ix(z) = ix(y) and jr(z) = ji(y)
and

(Tig (2)s g (2) 415 - -+ () —1) = Wi () Yir(w)+15 - - - Y () —1)-

That is to say, two points z,y are Ry related if they exhibit the same symbolic
names across the sequence of points in [By, Bx), and [By, By)y, and each sits
at the same position within the block. This is clearly an equivalence relation
and partitions X into mutually disjoint clopen equivalence classes, each being
a cylinder set given by a fixed word across indices i (z) through ji(z) — 1. Let
BY ... ,Bs (k) be the equivalence classes of Ry. By the construction we see that
on each set BY either ¢y, is not defined on any points of B or it is some fixed
power o™(“*) on all points in Bf. Now, the equivalence classes of Ry refine
those of BY and extend the definition of ¢x to some further cylinders. Thus,
almost all of X can be partitioned into clopen subsets on each of which ¢ acts as
a constant power of o. It follows that ¢ is almost continuous and, in particular,
measurable.

Any measurable and invertible transformation that acts a.e. as a power of o
must be measure preserving. To see this partition X into subsets X; on which ¢
acts as ot. Restricted to each X; the map ¢ is measure preserving. As the sets
(X)) must also partition X a.s. we see that ¢ itself is measure preserving. |

THEOREM 8: o1 and o9 are finitarily evenly Kakutani equivalent.

Proof. Recall that ¢ : 31 — 5g, ¢ : 5, — 51 and ¢ is identity on (81 U 5;)¢ and
carries orbits of o to themselves. Hence, ¢ : 5 — 57 and ¢ : 5, — 3¢ which
implies ¢(c1)¢ " has the same orbits as o2 and as ¢ is almost continuous, ¢ is
a finitary orbit equivalence between these two transformations.

Now consider the two induced maps 01,5; = 0(5,us,)c and o2,5c = 0(s5,0s,)e-
These two transformations are obviously the same but, more importantly, the
map ¢ restricts to an isomorphism (the identity) between them. Hence ¢ is
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an almost continuous Kakutani equivalence between the two Markov chains o
and os. [ |
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